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A Look Ahead

Unlocking Business Value
Basic Principles

Stabilizing Interfaces
Transforming Implementations
Adding Functionality
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By Pascal from Heidelberg, Germany - The Mess, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=37981790



Unlocking Business Value

Where is everything?

"Data and services are stuck
Iinside isolated applications
within the enterprise.”

-- Tung and Biltz, Accenture

http://www.computerweekly.com/feature/APIs-can-be-strategic-tools-to-unlock-business-value
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By DOJ - US Department of Justice photo, Public Domain, https://commons.wikimedia.org/w/index.php?curid=6419733



Unlocking Business Value

Why does it cost so much to get at it?

"It is about renovating at the core, as
opposed to getting rid of the core."

-- Hung LeHong, Gartner

http://www.zdnet.com/article/eight-obstacles-to-overcome-in-your-digital-transformation-journey/
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How can | reduce cost/risk?

https://www.infoq.com/articles/standish-chaos-2015 a




Unlocking Business Value

How can | reduce cost/risk?

"Lower the risk of change through tools
and culture.”

-- John Allspaw, Etsy

https://www.slideshare.net/jallspaw/10-deploys-per-day-dev-and-ops-cooperation-at-flickr/16-Dev_and_Ops/16



What do we do then?




Unlocking Business Value

Give your system the STAR treatment

Stabilize
Transform
Add
Repeat















But first...
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Basic Principles
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Basic Principles

The elephant in the room: one bite at a time.
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By Bit Boy - Flickr: The Elephant in the Room, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=20972528




Basic Principles
The elephant in the room: one bite at a time.
"Whenever you do a transition, do the

smallest thing that teaches you the most and | & "( g}
do that over and over again.” N ‘ ;

-- Adrian Cockcroft, Netflix

https://medium.com/s-c-a-I-e/talking-microservices-with-the-man-who-made-netflix-s-cloud-famous-1032689afed3 ‘ . . \
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Employ facades, stranglers, and refactoring
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https://upload.wikimedia.org/wikipedia/en/5/57/Example_of Facade_ design_pattern_in_UML.png




Basic Principles

Employ facades, stranglers, and refactoring

"The facade design pattern is used to define
a simplified interface to a more complex

subsystem.”

-- Richard Carr, BlackWasp

http://www.blackwasp.co.uk/facade.aspx




Basic Principles

Employ facades, stranglers, and refactoring

nearly

powiiion finished m

https://paulhammant.com/2013/07/14/legacy-application-strangulation-case-studies/ ‘ . \

starting early days half way finished




Basic Principles

Employ facades, stranglers, and refactoring

"Strangulation of a legacy solution is a safe
way to phase one thing out for something

better."”

-- Paul Hammant, Thoughtworks

https://paulhammant.com/2013/07/14/legacy-application-strangulation-case-studies/




Basic Principles

Employ facades, stranglers, and refactoring
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https://martinfowler.com/articles/refactoring-video-store-js/




Basic Principles

Employ facades, stranglers, and refactoring

"When you refactor you are improving the
design of the code after it has been written.”

-- Martin Fowler, Thoughtworks

https://martinfowler.com/books/refactoring.html
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APIls are forever, code is not.




Basic Principles

APIls are forever, code is not.

Not Found

The requested URL /oldpage.html was not found on this server.

Apache/2 2.3 (CentO5) Server at www.example.com Port 80

https://upload.wikimedia.org/wikipedia/commons/5/5f/404_not_found.png




Basic Principles

APIls are forever, code is not.

"We knew that designing APIs was a very
iImportant task as we'd only have one chance -
to get it right.” g

-- Werner Vogels, Amazon

http://www.allthingsdistributed.com/2016/03/10-lessons-from-10-years-of-aws.html
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Continuous change and instant reversibility
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Continuous change and instant reversibility

Router

https://martinfowler.com/bliki/BlueGreenDeployment.html
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Basic Principles

Continuous change and instant reversibility

"Blue-green deployment gives you a rapid
way to rollback - if anything goes wrong."

-- Martin Fowler, Thoughtworks

https://martinfowler.com/bliki/BlueGreenDeployment.html




Basic Principles

e Take one bite at a time.

e Employ facades, stranglers, and refactoring
e APIs are forever, code is not

e Continuous change and instant reversibility
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Step 1: Stabilize the Interface

The proxy MUST be pass-through only
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The proxy MUST be pass-through only
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Step 1: Stabilize the Interface
ESBs, external services stay behind the Proxy



ESBs stay behind the Proxy
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Step 1: Stabilize the Interface
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Step 1: Stabilize the Interface
External services stay behind the Proxy
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Step 1: Stabilize the Interface

"Proxy Marching"
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Step 1: Stabilize the Interface

Stabilize the Interface

All APl consumers talk to a proxy

The proxy MUST be pass-through only

Keep ESBs & external services behind the proxy
Employ a "Proxy March"
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Strangle the monolith
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Step 2: Transform the Implementation
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Step 2: Transform the Implementation

Replace tangled ESBs with facades
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Step 2: Transform the Implementation

Replace tangled ESBs with facades . .
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Step 2: Transform the Implementation

Transform the Implementation

e Refactor existing components
e Strangle the monolith
e Replace tangled ESBs
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Step 3: Add Functionality
Introduce new functionality via new components
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Step 3: Add Functionality
Acquire new functionality via 3rd party facades
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Step 3: Add Functionality
Acquire new functionality via 3rd party facades
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Step 3: Add Functionality

Add Functionality

e Side-by-side updates
e New components
e External services facades
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Step 4: Rinse and Repeat
All changes are incremental
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Step 4: Rinse and Repeat
All changes are incremental
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https://www.slideshare.net/jallspaw/ops-metametrics-the-currency-you-pay-for-change-4608108



Step 4: Rinse and Repeat
All changes are incremental

"Incremental change may just be the next
big thing this decade."

-- Sandeep Kishore, HCL Technologies

https://www.wired.com/insights/2013/11/the-power-of-incremental-innovation/ @
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Step 4: Rinse and Repeat
Aim for loose interop, not tight integration

Business Business

- - -
—_—— S

Application

Semantics
Semantics

Application

BEIE]

Communication

By Wkinterop - Powerpoint -> PNG, CC BY-SA 3.0, https://en.wikipedia.org/w/index.php?curid=35139609



Step 4: Rinse and Repeat

Aim for loose interop, not tight integration

"Interoperation is peer to peer. Integration is
where a system is subsumed within

another.”

-- Michael Platt, Microsoft

https://blogs.technet.microsoft.com/michael_platt/2005/08/30/integration-and-interoperability/ @
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Step 4: Rinse and Repeat
Support continuous improvement
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By Johannes Vietze - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=26722308



Step 4: Rinse and Repeat
Support continuous improvement

"Management's job is to improve the system."

-- W. Edwards Deming

https://deming.org/management-system/pdsacycle @




Step 4: Rinse and Repeat
Rinse and Repeat

e Make only incremental changes
e Aim for peer-to-peer interoperability
e Support continuous improvement



So...



The Quick Summary

Focus on Unlocking Value
Change One Thing

Stabilize the Interface
Transform the Implementation
Add Functionality

Rinse and Repeat

Microservice Migration Roadmap
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