Microservices Migration
Roadmap

@mamund

Mike Amundsen
Director of API Architecture

August 14, 2017

Microservice Migration Roadmap

A Look Ahead

Unlocking Business Value
Basic Principles

Stabilizing Interfaces
Transforming Implementations
Adding Functionality

Rinse and Repeat

Unlocking Business Value

Unlocking Business Value

Where is everything?

Unlocking Business Value

Where is everything?

By Pascal from Heidelberg, Germany - The Mess, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=37981790

Unlocking Business Value

Where is everything?

"Data and services are stuck
Iinside isolated applications
within the enterprise.”

-- Tung and Biltz, Accenture

http://www.computerweekly.com/feature/APIs-can-be-strategic-tools-to-unlock-business-value

Unlocking Business Value

Why does it cost so much to get at it?

-

Unlocking Business Value

Why does it cost so much to get at it?

By DOJ - US Department of Justice photo, Public Domain, https://commons.wikimedia.org/w/index.php?curid=6419733

Unlocking Business Value

Why does it cost so much to get at it?

"It is about renovating at the core, as
opposed to getting rid of the core."

-- Hung LeHong, Gartner

http://www.zdnet.com/article/eight-obstacles-to-overcome-in-your-digital-transformation-journey/

Unlocking Business Value

How can | reduce cost/risk?

Unlocking Business Value

How can | reduce cost/risk?

https://www.infoq.com/articles/standish-chaos-2015 a

Unlocking Business Value

How can | reduce cost/risk?

"Lower the risk of change through tools
and culture.”

-- John Allspaw, Etsy

https://www.slideshare.net/jallspaw/10-deploys-per-day-dev-and-ops-cooperation-at-flickr/16-Dev_and_Ops/16

What do we do then?

Unlocking Business Value

Give your system the STAR treatment

Stabilize
Transform
Add
Repeat

But first...

A A/
O|@Op=
NN N

Basic Principles

L_|_|

Basic Principles

The elephant in the room: one bite at a time.

Basic Principles

The elephant in the room: one bite at a time.

By Bit Boy - Flickr: The Elephant in the Room, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=20972528

Basic Principles
The elephant in the room: one bite at a time.
"Whenever you do a transition, do the

smallest thing that teaches you the most and | & "(g}
do that over and over again.” N ‘ ;

-- Adrian Cockcroft, Netflix

https://medium.com/s-c-a-I-e/talking-microservices-with-the-man-who-made-netflix-s-cloud-famous-1032689afed3 ‘ . . \

Basic Principles

Employ facades, stranglers, and refactoring

Basic Principles

Employ facades, stranglers, and refactoring

Clientl Client2

T
I ¢

i ¢
doSomething() +doSomething()
!

A " F-"
Facade

doSomething()

N

o : : doSomethi
pacager . [packagen [pagagen\, |SSRempe0

L 4 R Class2 €2 = new Class2():
Classl Class2 Class3 Class3 ¢3 = new Class3();
cl.doStuff(cz)

c3.setXlcl.getx());
return c3.get¥():
Ji

https://upload.wikimedia.org/wikipedia/en/5/57/Example_of Facade_ design_pattern_in_UML.png

Basic Principles

Employ facades, stranglers, and refactoring

"The facade design pattern is used to define
a simplified interface to a more complex

subsystem.”

-- Richard Carr, BlackWasp

http://www.blackwasp.co.uk/facade.aspx

Basic Principles

Employ facades, stranglers, and refactoring

nearly

powiiion finished m

https://paulhammant.com/2013/07/14/legacy-application-strangulation-case-studies/ ‘ . \

starting early days half way finished

Basic Principles

Employ facades, stranglers, and refactoring

"Strangulation of a legacy solution is a safe
way to phase one thing out for something

better."”

-- Paul Hammant, Thoughtworks

https://paulhammant.com/2013/07/14/legacy-application-strangulation-case-studies/

Basic Principles

Employ facades, stranglers, and refactoring

—
Vv ¥ ¥ V¥
= f
= - k..

https://martinfowler.com/articles/refactoring-video-store-js/

Basic Principles

Employ facades, stranglers, and refactoring

"When you refactor you are improving the
design of the code after it has been written.”

-- Martin Fowler, Thoughtworks

https://martinfowler.com/books/refactoring.html

Basic Principles

APIls are forever, code is not.

Basic Principles

APIls are forever, code is not.

Not Found

The requested URL /oldpage.html was not found on this server.

Apache/2 2.3 (CentO5) Server at www.example.com Port 80

https://upload.wikimedia.org/wikipedia/commons/5/5f/404_not_found.png

Basic Principles

APIls are forever, code is not.

"We knew that designing APIs was a very
iImportant task as we'd only have one chance -
to get it right.” g

-- Werner Vogels, Amazon

http://www.allthingsdistributed.com/2016/03/10-lessons-from-10-years-of-aws.html

Basic Principles

Continuous change and instant reversibility

Basic Principles

Continuous change and instant reversibility

Router

https://martinfowler.com/bliki/BlueGreenDeployment.html

P

Web
Server

App
Server

DB

8:8-8

Basic Principles

Continuous change and instant reversibility

"Blue-green deployment gives you a rapid
way to rollback - if anything goes wrong."

-- Martin Fowler, Thoughtworks

https://martinfowler.com/bliki/BlueGreenDeployment.html

Basic Principles

e Take one bite at a time.

e Employ facades, stranglers, and refactoring
e APIs are forever, code is not

e Continuous change and instant reversibility

/“\

Step 1: Stabilize the Interface

Step 1: Stabilize the Interface
All APl consumers talk to a proxy

Step 1: Stabilize the Interface
All APl consumers talk to a proxy

o — &
-O
& G_Jo\ J &

Step 1: Stabilize the Interface
All APl consumers talk to a proxy

J

Step 1: Stabilize the Interface

The proxy MUST be pass-through only

&

The proxy MUST be pass-through only

GC)L

AB
CD

Step 1: Stabilize the Interface

.

o —)

AB
C

@
&

Step 1: Stabilize the Interface

The proxy MUST be pass-through only

GCJ)

—_—

AB
CD

.

o —)

G0

The proxy MUST be pass-through only

GC)L

AB
CD

Step 1: Stabilize the Interface

.

o —)

AB
CD

@
&

Step 1: Stabilize the Interface

The proxy MUST be pass-through only

GCJ)

—_—

AB
CD

.

o —)

G0

The proxy MUST be pass-through only

GC)L

AB
CD

Step 1: Stabilize the Interface

.

o —)

AB
CD

@
&

Step 1: Stabilize the Interface
ESBs, external services stay behind the Proxy

ESBs stay behind the Proxy

@)O
@(\)
o

Step 1: Stabilize the Interface

2

Step 1: Stabilize the Interface
External services stay behind the Proxy

@
8

I
u

Step 1: Stabilize the Interface

"Proxy Marching"

Step 1: Stabilize the Interface

"Proxy Marching"

(—)

llo
) @
[

=9 [@

Step 1: Stabilize the Interface

"Proxy Marching" ﬂ _

- /(6) /
5" & o

&«

Step 1: Stabilize the Interface

(—)

"Proxy Marching" ﬂ

Step 1: Stabilize the Interface

"Proxy Marching" ﬂ

)

J’i I @

Step 1: Stabilize the Interface

Stabilize the Interface

All APl consumers talk to a proxy

The proxy MUST be pass-through only

Keep ESBs & external services behind the proxy
Employ a "Proxy March"

Step 2: Transform the Implementation

Step 2: Transform the Implementation

Refactor existing components

Step 2: Transform the Implementation

Refactor existing components

AB
CD 5 j API Consumers
O AB
CD

&

Step 2: Transform the Implementation

Refactor existing components

AB
CD 5 j API Consumers
O AB
CD

™

Step 2: Transform the Implementation

Refactor existing components

@ APl Consumers
O AB
CD

AB
CD ???

Step 2: Transform the Implementation

Refactor existing components

@ APl Consumers
O AB
CD

AB
CD ???

Step 2: Transform the Implementation

Strangle the monolith

Step 2: Transform the Implementation

MN VW
OP XY

APl Consumers

&

Step 2: Transform the Implementation

Strangle the monolith
QR
B
@ API Consumers

o AB QR
CD ST
AB
CD

Step 2: Transform the Implementation

Strangle the monolith m
QR
ST
MN @ API Consumers
OP
O AB QR
‘ CD \ ‘ ST \
CD

Step 2: Transform the Implementation

Strangle the monolith
MN VW
QR
XY
@ API| Consumers

I o ‘ AB \ ‘ QR \
CD ST
@
CD

Step 2: Transform the Implementation

Strangle the monolith
OP XY

APl Consumers
AB
'V'N CD
VW
XY

Step 2: Transform the Implementation

Replace tangled ESBs with facades

Step 2: Transform the Implementation

Replace tangled ESBs with facades
XY
W @ API Consumers
CD

Step 2: Transform the Implementation

Replace tangled ESBs with facades . .
MN VW
OP XY

@ API| Consumers

Step 2: Transform the Implementation

Transform the Implementation

e Refactor existing components
e Strangle the monolith
e Replace tangled ESBs

Step 3: Add Functionality

Step 3: Add Functionality
Update functionality via side-by-side components

¥

Step 3: Add Functionality
Update functionality via side-by-side components

AB
cD {\
APl Consumers
O

AB
CD

Step 3: Add Functionality
Update functionality via side-by-side components

AB
CD
AB EF
cD {\
APl Consumers
O
AB
CD

AB
CD
EF

Step 3: Add Functionality
Introduce new functionality via new components

Step 3: Add Functionality
Introduce new functionality via new components

AB
APl Consumers

o L J
AB
CD

Step 3: Add Functionality
Introduce new functionality via new components

77
XX
AB
cD {\
APl Consumers
o .]
AB
CD
' - '
77
-

Step 3: Add Functionality
Acquire new functionality via 3rd party facades

Step 3: Add Functionality
Acquire new functionality via 3rd party facades

MN VW
OP XY

@ API Consumers
O AB
CD

Step 3: Add Functionality
Acquire new functionality via 3rd party facades

MN VW
OP XY
@ API| Consumers

=
CD

Step 3: Add Functionality
Acquire new functionality via 3rd party facades

MN VW
OP XY
@ API Consumers

Step 3: Add Functionality

Add Functionality

e Side-by-side updates
e New components
e External services facades

Step 4: Rinse and Repeat

Step 4: Rinse and Repeat
All changes are incremental

O

Step 4: Rinse and Repeat
All changes are incremental

-

| /{ amll amounts of

code change
/ dtpln-,--:l

s e

Time Time

https://www.slideshare.net/jallspaw/ops-metametrics-the-currency-you-pay-for-change-4608108

Step 4: Rinse and Repeat
All changes are incremental

"Incremental change may just be the next
big thing this decade."

-- Sandeep Kishore, HCL Technologies

https://www.wired.com/insights/2013/11/the-power-of-incremental-innovation/ @

Step 4: Rinse and Repeat
Aim for loose interop, not tight integration

O

Step 4: Rinse and Repeat
Aim for loose interop, not tight integration

Business Business

- - -
—_—— S

Application

Semantics
Semantics

Application

BEIE]

Communication

By Wkinterop - Powerpoint -> PNG, CC BY-SA 3.0, https://en.wikipedia.org/w/index.php?curid=35139609

Step 4: Rinse and Repeat

Aim for loose interop, not tight integration

"Interoperation is peer to peer. Integration is
where a system is subsumed within

another.”

-- Michael Platt, Microsoft

https://blogs.technet.microsoft.com/michael_platt/2005/08/30/integration-and-interoperability/ @

Step 4: Rinse and Repeat
Support continuous improvement

O

Step 4: Rinse and Repeat
Support continuous improvement

~
>

Quality
Improvement

v

Time

By Johannes Vietze - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=26722308

Step 4: Rinse and Repeat
Support continuous improvement

"Management's job is to improve the system."

-- W. Edwards Deming

https://deming.org/management-system/pdsacycle @

Step 4: Rinse and Repeat
Rinse and Repeat

e Make only incremental changes
e Aim for peer-to-peer interoperability
e Support continuous improvement

So...

The Quick Summary

Focus on Unlocking Value
Change One Thing

Stabilize the Interface
Transform the Implementation
Add Functionality

Rinse and Repeat

Microservice Migration Roadmap

APl ACADEMY

®

technologies

Mike Amundsen

Director of API Architecture
mca@amundsen.com

3 @mamund
e amundsen.com/talks/

in linkedin.com/in/mamund

